7.6 DIFFERENTIAL EQUATIONS

FIGURE I

EXAMPLE A Solve the initial-value problem $x y^{\prime}=-y, x>0, y(4)=2$.
SOLUTION We write the differential equation as

Therefore

$$
\begin{aligned}
& x \frac{d y}{d x}=-y \quad \text { or } \quad \frac{d y}{y}=-\frac{d x}{x} \\
& \int \frac{d y}{y}=-\int \frac{d x}{x} \\
& \ln |y|=-\ln |x|+C \\
&|y|=\frac{1}{|x|} e^{c} \\
& y=\frac{K}{x}
\end{aligned}
$$

where $K= \pm e^{C}$ is a constant. To determine K we put $x=4$ and $y=2$ in this equation:

$$
2=\frac{K}{4} \quad k=8
$$

The solution of the initial-value problem is

$$
y=\frac{8}{x} \quad x>0
$$

Figure 1 shows the family of solutions $x y=K$ for several values of K (equilateral hyperbolas) and, in particular, the solution that satisfies $y(4)=2$ [the hyperbola that passes through the point $(4,2)]$.

EXAMPLE B Solve $y^{\prime}=1+y^{2}-2 x-2 x y^{2}, y(0)=0$, and graph the solution. SOLUTION At first glance this does not look like a separable equation, but notice that it is possible to factor the right side as the product of a function of x and a function of y as follows:

$$
\begin{aligned}
& \frac{d y}{d x}=1+y^{2}-2 x\left(1+y^{2}\right)=(1-2 x)\left(1+y^{2}\right) \\
& \int \frac{d y}{1+y^{2}}=\int(1-2 x) d x \\
& \tan ^{-1} y=x-x^{2}+C \\
& \text { Putting } x=0 \text { and } y=0 \text {, we get } C=\tan ^{-1} 0=0 \text {, so }
\end{aligned}
$$

$$
\tan ^{-1} y=x-x^{2}
$$

FIGURE 2

To graph this equation we notice that it is equivalent to

$$
y=\tan \left(x-x^{2}\right)
$$

provided that $-\pi / 2<x-x^{2}<\pi / 2$. Solving these inequalities using the quadratic formula, we find that

$$
\frac{1}{2}(1-\sqrt{1+2 \pi})<x<\frac{1}{2}(1+\sqrt{1+2 \pi})
$$

This enables us to graph the solution in Figure 2.

